A mating type-linked mutation that disrupts the uniparental inheritance of chloroplast DNA also disrupts cell-size control in Chlamydomonas.
نویسندگان
چکیده
An intriguing feature of early zygote development in Chlamydomonas reinhardtii is the active elimination of chloroplast DNA from the mating-type minus parent due presumably to the action of a zygote-specific nuclease. Meiotic progeny thus inherit chloroplast DNA almost exclusively from the mating-type plus parent. The plus-linked nuclear mutation mat3 prevents this selective destruction of minus chloroplast DNA and generates progeny that display a biparental inheritance pattern. Here we show that the mat3 mutation creates additional phenotypes not previously described: the cells are much smaller than wild type and they possess substantially reduced amounts of both mitochondrial and chloroplast DNA. We propose that the primary defect of the mat3 mutation is a disruption of cell-size control and that the inhibition of the uniparental transmission of chloroplast genomes is a secondary consequence of the reduced amount of chloroplast DNA in the mat3 parent.
منابع مشابه
Mating type linked mutations which disrupt the uniparental transmission of chloroplast genes in chlamydomonas.
In Chlamydomonas reinhardtii, chloroplast genomes are normally transmitted by the mating type plus (mt+) parent and mitochondrial genomes by the mating type minus (mt-) parent. In this paper we describe three new nuclear mutations, designated mat-3-1 to -3, which are tightly linked to the mt+ allele and permit high transmission of chloroplast genomes from the mt- parent, but have no effect on t...
متن کاملDifferential methylation of chloroplast DNA regulates maternal inheritance in a methylated mutant of Chlamydomonas.
In Chlamydomonas, the maternal inheritance of chloroplast genes correlates with the differential methylation of chloroplast DNA (chlDNA) in females (mt(+)) but not in males (mt(-)). Our previous studies have supported our methylation-restriction model in which the maternal transmission is accounted for by the differential methylation in gametes which protects female but not male chlDNA from deg...
متن کاملBiparental Inheritance of Non-Mendelian Gene Markers in CHLAMYDOMONAS MOEWUSII.
The first two non-Mendelian gene mutations to be identified in Chlamydomonas moewusii are described. These putative chloroplast gene mutations include one for resistance to streptomycin (sr-nM1) and one for resistance to erythromycin (er-nM1). In one- and two-factor reciprocal crosses, usually over 90% of the germinating zygospores transmitted these mutations and their wild-type alternatives fr...
متن کاملGenetic analysis of mating locus linked mutations in Chlamydomonas reinhardii.
The mating-type (mt) locus of Chlamydomonas reinhardii has been analyzed using four mutant strains (imp-1, imp-10, imp-11 and imp-12). All have been shown, or are shown here, to carry mutations linked to either the plus (mt+) or the minus (mt-) locus, and their behavior in complementation tests has allowed us to define several distinct functions for each locus. Specifically, we propose that the...
متن کاملAn mt(+) gamete-specific nuclease that targets mt(-) chloroplasts during sexual reproduction in C. reinhardtii.
Although the active digestion of mating-type minus (mt-) chloroplast DNA (cpDNA) in young zygotes is considered to be the basis for the uniparental inheritance of cpDNA in Chlamydomonas reinhardtii, little is known about the underlying molecular mechanism. One model of active digestion proposes that nucleases are either synthesized or activated to digest mt- cpDNA. We used a native-PAGE/in gelo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 6 12 شماره
صفحات -
تاریخ انتشار 1995